Expression and Association of the Yersinia pestis Translocon Proteins, YopB and YopD, Are Facilitated by Nanolipoprotein Particles.

نویسندگان

  • Matthew A Coleman
  • Jenny A Cappuccio
  • Craig D Blanchette
  • Tingjuan Gao
  • Erin S Arroyo
  • Angela K Hinz
  • Feliza A Bourguet
  • Brent Segelke
  • Paul D Hoeprich
  • Thomas Huser
  • Ted A Laurence
  • Vladimir L Motin
  • Brett A Chromy
چکیده

Yersinia pestis enters host cells and evades host defenses, in part, through interactions between Yersinia pestis proteins and host membranes. One such interaction is through the type III secretion system, which uses a highly conserved and ordered complex for Yersinia pestis outer membrane effector protein translocation called the injectisome. The portion of the injectisome that interacts directly with host cell membranes is referred to as the translocon. The translocon is believed to form a pore allowing effector molecules to enter host cells. To facilitate mechanistic studies of the translocon, we have developed a cell-free approach for expressing translocon pore proteins as a complex supported in a bilayer membrane mimetic nano-scaffold known as a nanolipoprotein particle (NLP) Initial results show cell-free expression of Yersinia pestis outer membrane proteins YopB and YopD was enhanced in the presence of liposomes. However, these complexes tended to aggregate and precipitate. With the addition of co-expressed (NLP) forming components, the YopB and/or YopD complex was rendered soluble, increasing the yield of protein for biophysical studies. Biophysical methods such as Atomic Force Microscopy and Fluorescence Correlation Spectroscopy were used to confirm that the soluble YopB/D complex was associated with NLPs. An interaction between the YopB/D complex and NLP was validated by immunoprecipitation. The YopB/D translocon complex embedded in a NLP provides a platform for protein interaction studies between pathogen and host proteins. These studies will help elucidate the poorly understood mechanism which enables this pathogen to inject effector proteins into host cells, thus evading host defenses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vaccination of mice with a Yop translocon complex elicits antibodies that are protective against infection with F1- Yersinia pestis.

Yersinia pestis, the bacterial agent of plague, secretes several proteins important for pathogenesis or host protection. The F1 protein forms a capsule on the bacterial cell surface and is a well-characterized protective antigen but is not essential for virulence. A type III secretion system that is essential for virulence exports Yop proteins, which function as antiphagocytic or anti-inflammat...

متن کامل

Impact of host membrane pore formation by the Yersinia pseudotuberculosis type III secretion system on the macrophage innate immune response.

Type III secretion systems (T3SSs) are used by Gram-negative pathogens to form pores in host membranes and deliver virulence-associated effector proteins inside host cells. In pathogenic Yersinia, the T3SS pore-forming proteins are YopB and YopD. Mammalian cells recognize the Yersinia T3SS, leading to a host response that includes secretion of the inflammatory cytokine interleukin-1β (IL-1β), T...

متن کامل

Yersinia pestis YopD 150-287 fragment is partially unfolded in the native state.

Yersinia pestis, a human and animal pathogen, uses the type III secretion system (T3SS) for delivering virulence factors and effectors into the host cells. The system is conserved in animal pathogens and is hypothesized to deliver the virulence factors directly from bacterial to mammalian cells through a pore composed of YopB and YopD translocation proteins. The YopB and YopD translocator prote...

متن کامل

Yersinia pestis YopD 150 – 287 fragment is partially unfolded in the native state q

Yersinia pestis, a human and animal pathogen, uses the type III secretion system (T3SS) for delivering virulence factors and effectors into the host cells. The system is conserved in animal pathogens and is hypothesized to deliver the virulence factors directly from bacterial to mammalian cells through a pore composed of YopB and YopD translocation proteins. The YopB and YopD translocator prote...

متن کامل

YopD of Yersinia pestis plays a role in negative regulation of the low-calcium response in addition to its role in translocation of Yops.

Yersinia pestis produces a set of virulence proteins (Yops and LcrV) that are expressed at high levels and secreted by a type III secretion system (Ysc) upon bacterium-host cell contact, and four of the Yops are vectorially translocated into eukaryotic cells. YopD, YopB, and YopK are required for the translocation process. In vitro, induction and secretion occur at 37 degrees C in the absence o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PloS one

دوره 11 3  شماره 

صفحات  -

تاریخ انتشار 2016